New Research Reveals Differences in How PAH (polycyclic aromatic hydrocarbon) Mixtures Affect Neurodevelopment

Exposure to a mixture of polycyclic aromatic hydrocarbons (PAHs) may produce different neurodevelopmental effects from those of exposure to individual PAHs, and the developing brain may be sensitive to these contaminants over a wide window of development, according to a Duke University Superfund Research Program (SRP) Center study.

Researchers identified direct effects of an environmentally relevant PAH mixture and a single PAH, benzo[a]pyrene (BaP), at two different points in neurodevelopment, reinforcing the need to consider mixtures rather than single compounds in exposure studies. The study also provided evidence for associations between developmental PAH exposures and behavioral deficits that have been previously observed in children and animals.

Led by Theodore Slotkin, Ph.D., researchers evaluated neurodevelopmental effects of BaP and a PAH mixture obtained from the Elizabeth River Superfund site. They used two different cell-based models that assess distinct transitions during neurodevelopment to determine the specific changes within cells that may contribute to developmental effects.

The first cell-based model, which uses pheochromocytoma (PC12) cells, has been used in thousands of studies to evaluate neurodevelopmental neurotoxicants. PC12 cells can be made to develop into neurons, the basic working unit of the brain. Neurons are the cells that transmit the information to enable learning, memory, emotion, and all of the other functions we associate with a working brain. This model is used to assess how exposure to chemicals affects neuron development.

The researchers found that the single PAH impaired the transition into neurons, resulting in a higher number of smaller cells with deficits in neuronal features.  On the other hand, the environmental PAH mixture did far less damage and only caused modest changes in cell numbers and size and no impairment of neuronal features.

The second cell-based model,  used embryonic neural stem cells (NSCs), to represent an earlier point in neurodevelopment at which NSCs choose to become neurons or glia. Glia support and protect neurons and provide guidance for the migration of neurons to their proper location in the developing brain. The mixture enhanced the formation of neurons, resulting in a profound drop in the glia-to-neuron ratio, which can affect brain homeostasis and function.

According to the authors, the study findings show that a complex PAH mixture can produce effects that differ in direction and magnitude from those of a single PAH like BaP. These differences may be a result of interactions among mixture components and may indicate potential health effects over a wider window of development, ranging from the earliest decision points when neurons and glia are formed through their later stages of development. Because sensitivity to different PAHs may occur during various developmental stages, the authors suggest that vulnerability to PAH exposure likely extends throughout fetal brain development and into early childhood.

For More Information Contact:

Theodore A Slotkin
Department of Pharmacology & Cancer Biology
Box 3813 Med Ctr.
Durham, NC 27710
Email: t.slotkin@duke.edu


Learn More
Source: NIH: National Institute of Environmental Health Sciences